
dinal and transverse coordinates; v, kinematic viscosity; a, thermal diffusivity; Cp, heat 
capacity at constant pressure; T~, temperature of the surrounding medium; I, impulse of the 
jet; Q, heat flux; p, density; d, nozzle diameter; r similarity variable; 6, thickness of 
the jet; f, stream function; 0, dimensionless temperature, 8 = E(T -T~)/TR~2; Br, Brickman 
number, Br = Pu02dexp(E/RT~)/Q*, Q* = ~pCpu0d2/4; Sv, entrainment parameter of the fluid' 

Sv = ~exp(E/RT~)/pu0d, ~ = RT~/E; F, dimensionless heat flux, F* = ~0CpUm~Tm62; Pr, Prandtl 

number, Pr = v/a; QI ~ (F -F0)/d; Q2 ~ exp(F/(x0 + ~F)Sv)/xB 2. 
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DETERMINING RHEOLOGICAL PARAMETERS FOR A DISPERSION 

SYSTEM BY ROTATIONAL VISCOMETRY 

M. A. Myslyuk UDC 532.135 

An algorithm has been devised for inverse treatment in rotational viscometry 
subject to a priori uncertainty over the model. A model class has been for- 
mulated for rheologically stationary systems. 

Dispersion systems are widely used, and determining their rheological characteristics 
is important in data support to optimum management. 

Some methods of processing data from rotational rheometry [1-3] make inadequate use of 
the information from experiment to derive models and evaluate parameters. Also, simplified 
methods are usually used to evaluate rheological characteristics for nonlinear viscoplastic 
media [i, 3], and these may give substantial errors in inverse treatments. 

One can process such data from an equation describing Couette flow in a gap between 
coaxial cylinders [i]: 

The relation between the stresses on the outer and inner cylinders is 

= f ~2T, if T~O /~2 ;  a [ %, i f  ~6]~o, %I~[,  

where T 0 is the dynamic shear stress (yield point), ~ = RI/R2, and R I and R 2 are the radii 
of the inner and outer cylinders. 

An inverse rheometric treatment involves choosing the state index v for the medium 
from a certain class ~ of^rheologically stationary models known a priori and then estimat- 
ing the parameter vector pv for that model. The ~ class can be formed from the following 
models: Newtonian (~ = i) - i = z/p, Shvedov-Bingham (v = 2) - y = (~-T0)/B, Ostwald_(v =_3) 
- ~ .= (~/k) I/n, Herschel'Bulkley (v = 4) - ~ = ((T-~0)/k) I/n, Schulman--Casson (v = 5) 
(T I/n - T011n)n/~, etc. Here p, To, k, n are the rheological parameters. 

Statistical methods are applied to treating the data [4], on the assumption that the 
discrepancy between the measurement vector T having components {Ti}, iel, N and the theoreti- 
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cal pattern A(m, Pv) (subsequently, we write A(pv) for simplicity) is such that m = {mi} 
and is additive, so we can formalize the inverse treatment as 

'either A (Px) q- nl, 
�9 . . . . . 

= ( 2 )  or A (pv)q-n,, v E ~. 
�9 . . . . . 

B e f o r e  we c o n s t r u c t  e s t i m a t i o n  p r o c e d u r e s ,  we have  t o  m e n t i o n  t h e  d i s t r i b u t i o n  f o r  t h e  
random d i s c r e p a n c i e s  above .  We assume t h a t  t h e s e  d i s c r e p a n c i e s  a r i s e  f rom measurement  e r r o r s ,  
and we assume a normal  d i s t r i b u t i o n .  P r a c t i c a l  i n t e r e s t  a t t a c h e s  t o  c a s e s  when n v i s  a 
c e n t e r e d  q u a n t i t y  h a v i n g  a c o v a r i a n c e  m a t r i x  C, which  can be d e r i v e d  by e x p e r i m e n t ,  and when 
t h e  random component  i s  c e n t e r e d ,  s t a t i o n a r y ,  and i n d e p e n d e n t  a t  a l l  t h e  o b s e r v a t i o n  p o i n t s .  
The l a t t e r  p a r t i c u l a r  c a s e  in  g e n e r a l  r e q u i r e s  i n d e p e n d e n t  c o n s i d e r a t i o n  in  r e l a t i o n  t o  o p e r -  
a t i o n a l  r h e o l o g i c a l - p a r a m e t e r  e s t i m a t i o n  f rom r e s t r i c t e d  d a t a  and t h e  need  f o r  j o i n t  e s t i m a -  
t i o n  of the random-component variance o 2 in the covariance matrix C = o21. 

We handle (2) with an algorithm [4] based on estimating the parameter vector ~(~e%) and 
then recognizing the state 0. We use maximum-likelihood estimators. The likelihood function 
is 

I exp [ _  + ( ~ _  A (p,))~ C_~ ( ~ _  A (pv)) ] 
L = (2n)~/2 }C11/2 ' (3)  

where Icl is the determinant for the covariance matrix (Icl 0), c -I is a matrix inverse to 
C, and (.)T is the transposed discrepancy vector. Then we have the following estimator pro- 
cedures for the rheological-parameter vector: 

max L (Pv) =~ pv, v 6 ~, (4)  
~Pv 

and model recognition 

max L (p~) =,. $. (5 )  

On joint maximum-likelihood estimation for p~ and o 2 (case C = o2I), the estimators 6~ 2 
and p~ are independent [4], and in essence the treatment does not differ from that of (4). 

As matrix C is symmetrical and positive-definite, C -l has a positive and symmetrical 
square root C -I12 Then (4) is equivalent to 

I IC-~/2 (~ _ A (Pv))][ q- Fp (pv)--+min, ~ 6 ~, (6 )  

where I1" II denotes the norm and 

Fp (Pv) = { 0 =~ Lv = L~, if Pv 6 Pv; 
oo=,- L~ = 0, if p~ 6 Pv. 

The functional Fp in (6) reflects the Lagrange principle for a treatment subject to 
constraints and in essence does not complicate the solution; the formulation is based on 
the specific class %, in which each successive model extends the previous in some sense. 

We first solve (i) for a nonlinear viscoplastic medium (re4, 5). For states ~el, 3 (i) 
is readily solved analytically, and the solution has been givenfor example in[2]. Equa- 
tion (i) is a Volterra-type integral one and can be solved from recurrent relations. One 
can use Newton-Coates quadrature formulas to approximate (i) to get a recurrent relation: 

2 N , - - 1  

xi+, = 12N~ { ~ IF(~{_,)+ 4F(~)+ F(x{+,)]}-' + a, (7) 
i=1,3 

where F(-) is the expression in the integrand in ( i ) ,  while TJ2N I is approximation j for T, 
~Ji = ~Ji-1 + (xJ2N I - a)2N1, and ~Ji-1 = a for i = i.  

Equation (7) converges uniquely to the solution for bounded �9 on the set De]a, + ~[ be- 
cause the mapping of D into i t s e l f  is continuous when the number of nodes 2N I and the zeroth 
approximation ~0 are chosen appropriately. 

We construct the solution to (6) without constraints for a nonlinear viscoplastic medium 
(ve4, 5). For states vel, 3, (6) can be solved analytically (for v = 2 with z ~ ~0/~2). We 
construct the algorithm on extremal classes [5]. 

Let p n be approximation n for the solution to (6) and let A be a diagonal matrix having 
elements ~ that define the a priori standard deviations of the p n from Pv- As the Fr4chet 
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derivative A'(pv) is continuous in the region of pv n, we first consider the following quasi- 
linear form in an auxiliary treatment: 

{ A ' ( p ~ ) h  = ~, 
[[A-IAI[-+ min, ( 8 )  

w h e r e  h = Pv - Po n a n d  ~ i s  some e l e m e n t  f o r  w h i c h  o n e  o f  t h e  s o l u t i o n s  t o  t h e  f i r s t  e q u a -  
t i o n  in (8) has the characteristic A(pv n + h) = ~. The second equation in (8) defines the 
solution selection criterion. 

As A is a linear and closed operator having the kernel Ker A = {0}, the extremal class 
for an operator A ~ linear in the region of pv n is [5] 

h = A2A '* (p$) ~ ,  ( 9 )  

where ~ is an element from the definition region for the conjugate operator A'* (* repre- 
sents the Hilbert conjugation). Then (6) with (8) and (9) can be represented as 

I1C-'/2 (A (p~ q-A2A '* (p$) ~) - -  ~)ll ~ min. ( 1 0 )  

K o b r u n o v  [5 ]  p r o p o s e d  a c o n v e r g e n t  i t e r a t i o n  f o r  ( 1 0 ) :  

p$+~=p$ + ~ m ,  (li) 

where ~ = A2A'*(pvn)c-l(A(pv n) - T), which enables one to obtain a solution when the relaxa- 
tion parameter a n is chosen from 

< C-*(A(P~)--*)IA'(POr > ( 1 2 )  
~ = - -  < C-*A' (p~) m l A' (pg) m > ' 

where <.['> denotes the scalar product. Consequently, the algorithm for solving nonlinear 
(6) without constraints amounts to choosing the zeroth approximation pv ~ together with ma- 
trix A and implementing (ii) on the basis of (12). 

Then the algorithm for processing the viscometry data can be based on the following pro- 
cedures. 

I. One formulates class ~ of possible rheological models. 

2. C -z is constructed from the measurements. 

3. One solves (6) for class ~. 

4. One puts pv into correspondence with the set of possible solutions Pv (ve~). If for 
some subclass ~ i E ~  one has pv~Pv, one can put L(pv) = 0 Vv~i. 

5. One calculates L(pv) from (3) for the model class ~/~i. 

6. One derives from (5) the model 0 best in the maximum-likelihood sense. 

7. The performance in the solution is evaluated via Pv for model v. The covariance 
matrix for the rheological-parameter vector can be obtained by inverting the Fisher in- 
formation matrix [4]: 

o = (A' (~)  C-~A'* &))-~ 
We c o n s i d e r  p r o c e s s i n g  d a t a  f o r  a b e n t o n i t e  d r i l l i n g  s o l u t i o n  a s  r e g a r d s  t h e  i n t e r p r e -  

t a t i o n  p r o v i d e d  b y  t h i s  m e t h o d  a n d  some o f  t h e  commoner  o n e s .  The  m e a s u r e m e n t s  w e r e  made 
w i t h  a r h e o m e t e r  h a v i n g  a = 0 . 9 0 9 :  m = { 0 . 0 2 1 ;  4 . 1 8 9 ;  5 . 2 8 3 ;  8 . 3 7 8 ;  1 2 . 5 6 5 ;  2 0 . 9 4 4 ;  3 1 . 4 1 5 ;  
4 1 . 8 8 8 ;  5 2 . 8 3 }  s e c  - z ,  ~ =  { 7 . 8 1 ;  1 5 . 5 2 ;  1 7 . 7 5 ;  1 8 . 8 2 ;  2 1 . 3 0 ;  2 5 . 5 5 ;  2 9 . 1 1 ;  3 3 . 0 1 ;  3 9 . 0 5 }  P a .  
The  i n v e r s e  t r e a t m e n t  was h a n d l e d  w i t h  t h e  ~ e { 2 ,  4 ,  5} m o d e l  c l a s s .  To e n s u r e  i d e n t i c a l  
p r o c e s s i n g  c o n d i t i o n s  f o r  t h e  d i f f e r e n t  m e t h o d s ,  t h e  c o v a r i a n c e  m a t r i x  was t a k e n  a s  C = a 2 I .  
The  b e s t  m o d e l  was 0 = 5 ( S c h u l m a n - C a s s o n ) ,  t h e  r h e o l o g i c a l - p a r a m e t e r  e s t i m a t o r s  b e i n g  ~0 = 
5 . 4 7  P a ,  ~ = 3 . 5 1 " 1 0  -3  P a - s e c ,  a n d  6 = 3 . 2 9 .  The  c a l c u l a t e d  s h e a r  s t r e s s e s  w e r e  ~ = { 7 . 5 2 ;  
1 5 . 5 8 ;  1 7 . 3 5 ;  1 8 . 8 7 ;  2 1 . 3 9 ;  2 5 . 2 7 ;  2 9 . 2 9 ;  3 2 . 8 4 ;  3 9 . 3 3 }  P a .  

The  t r a d i t i o n a l  m e t h o d  i s  b a s e d  on a p p r o x i m a t e  c a l c u l a t i o n  o f  t h e  s h e a r  r a t e  g r a d i e n t  
= 2 m / ( 1  - a 2 ) ,  a n d  t h e  e s t i m a t o r s  a r e  o b t a i n e d  b y  l e a s t  s q u a r e s  a s  ~ = 5 ,  t 0 = 6 . 7 5  P a ,  
= 4 . 7 5 . 1 0  -3  P a - s e c ,  a n d  n = 2 .  The  c a l c u l a t e d  s h e a r  s t r e s s e s  a r e  ~ = { 8 . 5 3 ;  1 6 . 7 5 ;  1 8 . 5 4 ;  

2 0 . 0 4 ;  2 2 . 5 2 ;  2 5 . 7 4 ;  3 0 . 9 7 ;  3 4 . 5 7 ;  4 1 . 0 4 }  P a .  

The d a t a  w e r e  p r o c e s s e d  b y  t h e  [3 ]  m e t h o d  a s  f o l l o w s .  F i r s t ,  m = f ( < )  p o l y n o m i a l s  w e r e  
u s e d  t o  s m o o t h  t h e  m e a s u r e m e n t s .  The  e q u a t i o n  f ( ~ 0 )  = 0 was s o l v e d  t o  o b t a i n  t h e  e s t i m a t o r  ~o.  
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Then points on the rheological curve ~i and Yi were calculated (in the ranges measured with 
the rheometer) and fitted to the corresponding models. Results: v = 5, ~0 = 9.47 Pa, p = 
1.248.10 -2 Pa.sec, and n = 2. Calculated shear stresses ~ = {10.35; 15.96; 17.38; 18.63; 
20.91; 24.68; 28.72; 32.09; 38.92} Pa. 

The standard deviation between the calculated and experimental values on the proposed 
method was 0.9%, as against 5.6% in the method based on estimating # or 4.0% in the [3] 
method. The maximal errors on these methods were correspondingly 3.7, 9.2, and 32 5%. The 
methods based on approximating ~ [i, 3] for high shear rates usually give systematic errors. 
The best interpretation performance in this range from [i, 3] is provided by the latter 
method. The [3] method differs from the proposed one in being very sensitive to the data 
volume and to the extrapolation to low shear rates. 

The data were processed with the covariance matrix from experiment and by the [i, 3] 
methods (without the matrix), which showed that the differences in the estimators were more 
substantial, and sometimes there were errors in interpreting the model. 

NOTATION 

m, angular velocity of outer cylinder; ~ and a, shear stresses on the inner and outer 
cylinders; ~('), rheological model; #,shear rate gradient; Pv, rheological-parameter vec- 
tor, dimensions i • my; A, direct treatment operator (vector, dimensions i • N); nv, random- 
discrepancy vector, dimensions i • N; I, unit matrix, dimensions N x N; Pv, constraint on 
theological-parameter vector; 2NI, number of quadrature nodes in segment [a, TJ]; A', deri- 
vative matrix, dimensions my x N; A'*, matrix conjugate to A', dimensions N x mv; O, rheo- 
logical-parameter estimator covariance matrix, dimensions m~ • my. 
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MEASUREMENT OF TEMPERATURE DISTRIBUTIONS IN A CONVECTIVE 

FLOW INDUCED BY POWERFUL OPTICAL RADIATION 

B. S. Agrovskii, A. N. Bogaturov, 
V. I. Zuev, and V. M. Ol'khov 

UDC 536.252 

Results are presented from an experimental study of the convection which occurs 
within a liquid upon heating by a powerful light beam. The dependence of tem- 
perature on the convective jet axis upon power of the heating radiation is ob- 
tained. 

When a powerful light beam propagates through an absorbing medium the latter heats up, 
its density changes, and as a result, convective flows develop. The low thresholds required 
for development of convection have attracted the attention of researchers to this phenomenon. 
Study of the mechanisms of photoabsorption convection may be of interest not only from the 
viewpoint of consideration of the processes accompanying propagation of powerful optical 
radiation through natural media (the atmosphere, ocean) but also as a new easily realized 
method for orienting flows in various industrial apparatus. 

Atmospheric Physics Institute, Academy of Sciences of the USSR, Moscow. Translated from 
Inzhenerno-Fizicheskii Zhurnal, Vol. 54, No. 6, pp. 980-982, June, 1988. Original article 
submitted February 13, 1987. 

658 0022-0841/88/5406-0658512.50 �9 1988 Plenum Publishing Corporation 


